

EMBERS – D2.3, page 1 of 55

HORIZON 2020

Information and Communication Technologies

Integrating experiments and facilities in FIRE+

Deliverable 2.3

First Report on Experiment Results and

Suggestions for Improvements

Grant Agreement number: 687992

Project acronym: EMBERS

Project title: Enabling a Mobility Back-End as a Robust Service

Type of action: Innovation Action (IA)

Project website address: www.embers-project.eu

Due date of deliverable: 2017-03-31

Dissemination Level

PU Public X

CO Confidential, only for members of the consortium (including the Commission Services)

EMBERS – D2.3, page 2 of 55

Document properties

Leader partner Technische Universität Berlin

Author(s)/editor(s) Daniel Nehls (TUB), Francisco Cardoso (UW), André Duarte (UW), Olivier

Fambon (INRIA), Christian Klopp (Fraunhofer)

Version Version 1.0

Abstract

This deliverable follows up on D2.2 - “First Report on Experiment Design and Description”. It aims

at summarizing the results of the experiments undertaken so far (section 2) as well as introducing

the next steps planned in experimentation to achieve the project's objectives such as supporting

UBIWHERE in maturing the MBaaS platform. Therefore, section 3 depicts potential improvements

in the experiment design based on results and identified KPIs, and defines additional experiments

to be performed in the upcoming phase of the project.

EMBERS – D2.3, page 3 of 55

Table of Contents

1	 Introduction	..	4	

2	 Experiment Description and Results	..	5	

2.1	 Simple Broker Connection Experiment	...	5	

2.2	 Load Generator Experiments	..	6	

2.3	 FIT-IoT Lab Tools Experiments	...	15	

2.3.1	 Hackathon Tool wrap-up	...	15	

2.3.2	 Open-A8 Tooling	...	16	

3	 Experiment Improvements and Future	...	19	

3.1	 Experiment 1 / Broker Connection	...	20	

3.2	 Experiment 2 / FIT-IoT LAB Tools	...	20	

3.3	 Experiment 3 / Load Generator	...	20	

3.4	 Testing Infrastructure improvement	...	21	

3.5	 Future Experimentation	..	21	

4	 Conclusion	..	23	

5	 Appendix	...	24	

5.1	 FiT - IoT Lab Experiments	..	24	

5.1.1	 Iteration A - Traffic	..	24	

5.1.2	 Iteration B - Traffic	..	26	

5.2	 Load Generator Experiments	..	29	

5.2.1	 Iteration A - Traffic	..	29	

5.2.2	 Iteration A - Parking	..	34	

5.2.3	 Iteration A - Environment	...	38	

5.2.4	 Iteration B - Traffic	..	42	

5.2.5	 Iteration B - Parking	...	47	

5.2.6	 Iteration B - Environment	...	51	

6	 References	..	55	

EMBERS – D2.3, page 4 of 55

1 Introduction

The experiments described in the precedent deliverable D2.2 where meant to represent the first wave

of tests designed and executed on the EMBERS platform.
These experiments were designed with two main objectives of the project in mind; to bring the MBaaS

platform to market and contribute back to the involved FIRE+ [1] infrastructures. Following this agile

approach, this deliverable summarizes the results of the first tests and describes their evolution.
The scope of these experiments is to show the integration of the platform and the work done until now.

The deliverable comes right after a successful first event, the Helsinki Hackathon, which was the first

real test to the platform.
All in all, this deliverable will be the first building block to further, more complex, experimentation which

will enable the MBaaS to successfully reach its objectives.

EMBERS – D2.3, page 5 of 55

2 Experiment Description and Results

This section covers the description and results of the experiments designed in the D2.2. The main

purpose of these experiments is to test the MBaaS architecture at two levels: firstly, a simple broker

connection to test the backend communication and in second to test the backend using the INRIA

testbeds and the Fraunhofer FOKUS Load generator in order to create more realistic load scenarios.

These load scenarios allow to test the MBaaS against different types of load and identify possible

failures.

2.1 Simple Broker Connection Experiment

This experiment is designed as a broker connection validation test and covers the integration

requirements described in D1.1 (sections 2.1.1 / protocol, and 2.3.1 / broker). For the purpose of this

deliverable, we evaluated the Meshblu broker connections over HTTP.

Objectives

• Check that a sample Backend client (sensor/device, southbound interface) can register and

connect to the MBaaS over HTTP

• Check that a sample Backend client can send events to the broker over HTTP

• Check that a sample Frontend client (application, MBaaS client, northbound interface) can

connect to the MBaaS and receive events

Experiments

• The hackathon IoT-Lab ‘injectors’ demonstrated this (and did send events)

• The hackathon ‘Load Generator’ demonstrated this (and did send events)

Results

• The backend devices connection and event sending was successful

• The event receiving was successful, as seen via the apiary-listed API endpoints (northbound

interface, http “paginated” events list)

EMBERS – D2.3, page 6 of 55

2.2 Load Generator Experiments

This section describes how the Fraunhofer FOKUS Load Generator was used in order to test the

MBaaS against different types of load scenarios, with the main purpose of getting detailed information

about possible failures of the MBaaS overall architecture.

Objectives

The main purpose of this experiment is to test the MBaaS against different load scenarios and to

achieve that, were used three main tools: the Load Generator from Fraunhofer FOKUS, an automation

tool and a time series analytics tool from UBIWHERE, that will be shortly described next:

• Load Generator: This tool allows creating load scenarios against the MBaaS according to

predefined specifications. It allows to easily create experiments that will send specific data to

the MBaaS, simulating the data that is used in real use case scenarios.

The experiments can be configured with a variety of parameters like: duration, interval of status

updates, device broker specific parameters (e.g. host, port, protocol, special headers or

payloads). Especially, it is possible to define multiple sensor types with freely configurable

payloads over time. This allows very specific tests. Besides the possibility to configure all those

payloads manually, there are generator mechanisms to compute the different payloads

automatically. This way unnecessary configuration effort can be avoided, especially in regard

to tests with a huge number of emulated sensors.
An instance of the Load Generator is integrated within the FUSECO Playground at Fraunhofer

FOKUS and accessible from the outside. Therefore, it is possible to run experiments without

the effort to set up a running instance yourself. Additionally, it is possible to easily deploy an

own instance of the Load Generator via Docker.

• Automation tool: This tool was created to enable easy replication of different load scenarios

against the MBaaS. To do that this tool interacts with the Load Generator, which will launch

experiments against the MBaaS. The automation tool is configured by different parameters

that are needed by the Load Generator specifying the experiment: username, experiment

name, experiment type (parking, traffic, and pollution), the number of sensors, experiment

duration and interval between messages. Using these parameters, the automation tool will

interact with the Load Generator in order to launch the experiment and will collect data

regarding the experiment.

This tool is separated in two main services: one responsible for the interaction with the Load

Generator (named performance) that will launch the experiments and other (named listener)

EMBERS – D2.3, page 7 of 55

responsible for connecting to the MBaaS and control the data that is received from the Load

Generator.

• Time series analytics tool: This tool allows analysing the MBaaS microservices-based

architecture. Since the backend is built using Docker, is necessary to have a tool that allows

to control and analyse the impact that each Docker service has. To achieve that, this tool was

used, which allows collecting metrics regarding each service about CPU, RAM, Disk I/O and

Network I/O usage.

With this metrics, it is possible to identify the impact that each service has in the MBaaS and

possible problems in the architecture.

Figure 1: Tools Interaction

The image above represents how the three tools interact in order to reproduce load scenarios against

the MBaaS and collect useful metrics in order to analyse the MBaaS behaviour.
After each experiment launched with this set of tools, it is possible to have a time series analysis about

CPU, RAM, Disk I/O and Network I/O regarding each service. Using the time series analysis tool, it is

possible to have information about the succeeded/failed steps taken by the Load Generator, detailed

information about the experiment launched by the automation tool (experiment type, number of

sensors, experiment duration, interval between messages, experiment start time and experiment finish

time), detailed information about the experiment launched (registered sensors, messages sent,

messages failed, experiment start time and experiment finish time) and information regarding the data

that was received in MBaaS (expected received messages and number of received messages).

EMBERS – D2.3, page 8 of 55

Experiments

The following table shows the two iterations planned to accomplish the experiment.
Both iterations aim to test the MBaaS against the three types of data: parking, environment, and

pollution, with different numbers of sensors (100 and 300) and with different interval between messages

(60 and 30 seconds).
This way the iterations represent an incremental test were firstly the MBaaS is tested against a small

group of sensors sending messages between 60 and 30 seconds at the same time, and in the second

iteration the MBaaS is tested against a bigger group of sensors (300) sending messages between the

same interval as the previous iteration at the same time. Both iterations have the same duration (30

minutes).

Iteration Type Number of devices Duration (seconds) Messages interval

A

Traffic 100 1800
60

30

Parking 100 1800
60

30

Environment 100 1800
60

30

B

Traffic 300 1800
60

30

Parking 300 1800
60

30

Environment 300 1800
60

30

During iterations information will be collected using the automation tool and the time series analytics

tool. This way it will be possible to compare how the variation of the two main factors (number of

EMBERS – D2.3, page 9 of 55

sensors and interval between messages) that can influence the system behaviour will influence the

MBaaS microservice-based architecture.
Before each of the iterations it is important to set the MBaaS baseline regarding CPU, RAM, Disk I/O

and Network I/O that each service consumes. Regarding this metrics, the following charts represent

what each service consumes using the time series analytics tool. This baseline represents the fully

functional complete MBaaS deployment without any activity.

For each one of the following charts the colours represent the MBaaS services:

 Mongo Postgres Meshblu Socket.io Load generator broker

 Redis Meshblu HTTP Meshblu Core Reverse proxy

Mongo: responsible for the database used by Meshblu to maintain the registered sensors;
Redis: responsible for the database used by Meshblu to maintain the received messages;
Postgres: responsible for main database of the MBaaS;
Meshblu HTTP: receives the HTTP communication to Meshblu;
Meshblu socket.io: receives Websocket communication to Meshblu;

Meshblu core: coordinates all the Meshblu containers (in this case, Meshblu HTTP and Meshblu

Socket.io containers);
Load generator broker: responsible to collect the messages that arrive at Meshblu;

Reverse proxy: responsible to receive all the incoming communication to the MBaaS and redirect

them to the correct service/container.

CPU usage by container
Represent the usage by container of the host machine CPU in percentage (0-100%)

Figure 2: CPU usage baseline by container (0-100%)

EMBERS – D2.3, page 10 of 55

Memory RAM usage by container
Represent the usage by container of the host machine memory RAM in Megabytes

Figure 3:Memory RAM usage baseline by container (MB)

Disk input/output by container
Represent the total disk input and output for each container in Megabytes

Figure 4: Disk I/O baseline by container (MB)

Network output by container
Represent each container network output in Megabytes

Figure 5: Network output baseline by container (MB)

Network input by container
Represent each container network input in Megabytes

Figure 6: - Network input baseline by container (MB)

EMBERS – D2.3, page 11 of 55

It is important to refer that in order to collect the time series analytics regarding each service it is

necessary to have two additional services running in the MBaaS. These two services are responsible

for collecting metrics about the host machine and each one of the services. Since these two must be

running on the same host as the MBaaS and they are consuming resources these two will influence

the MBaaS performance.
The automation tool described above, will be used to interact with the Load Generator and collect

some metrics regarding the experiment.

Figure 7: Automation tool example result

EMBERS – D2.3, page 12 of 55

In the results of the automation tool, as we can see in Figure 7, it is possible to collect data regarding

the automation tool itself, the launcher and listener services of the automation tool, the Load Generator

and the MBaaS:
1. Automation tool process: The automation tool starts by creating the two services

(performance and listener) and everything needed by each one, like requirements and

environment variables.

2. Listener process: The listener service is responsible for connecting to a predefined gateway

and receives all the messages sent to it. This way is possible to compare the expected received

messages and the number of messages that actually arrived at the MBaaS and consequently

to the listener service.

3. Performance process and results: The performance service of the automation tool is

responsible for interacting with the Load Generator to launch the experiments. In the process

of this service, it is possible to recognize what interactions were done with the Load Generator

and if they succeeded or failed. Regarding the results, it is possible to collect the following

metrics:

o Experiment type: type of data that the experiment sent to the MBaaS;

o Number of sensors: number of sensors that sent messages to the MBaaS;

o Experiment duration: time that the experiment was running;

o Messages interval: interval between messages sent by sensors to the MBaaS;

o Start time: time that the load generator started the experiment (sensors registration not

included);

o Finish Time: time that the load generator finished the experiment (sensors unregistration

not included);

o Elapsed time: Time that the experiment was running (finish time - start time).

4. Load generator results: These results are exported by the Load Generator itself after

completing each experiment and provide the following metrics:

o Registered sensors: number of sensors registered before the experiment;

o Unregistered sensors: number of sensors unregistered after the experiment;

o Registration ended: time when the sensors registration ended;

o Unregistration ended: time when the sensors unregistration ended;

o Messages sent: number of messages sent during the experiment;

o Messages failed: number of failed messages during the experiment;

o Experiment start: time when the experiment started;

o Experiment ended: time when the experiment ended.

To understand each one of the baseline charts and the results collected from the experiment it is

important to know the host machine characteristics:

EMBERS – D2.3, page 13 of 55

CPU Memory RAM Disk Size Disk IOPS Limit Operative System

1 Core 3.5 GB 30 GB 3200 Ubuntu 16.04

This machine host was created with this characteristic specifically for tests purposes in order to

separate the production environment from the test's environment. This way it is possible to have a

clean deployment that can be used for tests without any impact on the production environment.
By analysing the baseline times series charts for the machine and accordingly its characteristics it

is possible to say that, in general, all the observed containers/services consume a very small part

of the machine resources when there is no activity. This small resource consumption is a result of

the microservices-based architecture that allows that all the MbaaS is built in small services that

work individually and communicate with each other in order to work as one single piece.
Due to the cloud provider that was used to host the MBaaS, the machine characteristics needed

to be changed (from 2GB to 3.5GB of RAM) to match the available options.

Results

The following table represents the results obtained for each experiment regarding the number of

messages sent from the load generator and received at the MBaaS and the experiment duration. These

two parameters are important to measure, because they represent the success or failure of the

experiment. The experiment duration refers to all steps of the automation tool process. So, this time is

more than actually the time that the experiment was running because it includes intermediate steps

like automation tool services preparation, sensors registration and unregistration by the Load

Generator and the time needed to interact the load generator to launch the experiments.

Iteration Type Devices Duration (s) Messages interval Sent/Received messages Duration

A

Traffic 100 1800
60 3000/3000 0:32:12

30 6000/6000 0:32:15

Parking 100 1800
60 3000/3000 0:32:08

30 6000/6000 0:32:14

Environment 100 1800 60 3000/3000 0:32:10

EMBERS – D2.3, page 14 of 55

30 6000/6000 0:32:17

B

Traffic 300 1800
60 9000/9000 0:36:12

30 18000/18000 0:36:17

Parking 300 1800
60 9000/9000 0:36:07

30 18000/18000 0:36:16

Environment 300 1800
60 9000/9000 0:36:24

30 18000/18000 0:36:33

Regarding the automation tool and the time series analytics, the results obtained for each iteration can

be found in the appendix (5.2). The number of sent/received messages and duration presented in the

previous table were collected from the automation tool results.
The main purpose of these experiments was to test the MBaaS against three types of data: traffic,

parking and environment and check the behaviour of each MBaaS service. Accordingly, after analysing

the table, it is possible to confirm that all the iterations/experiments were successful since all data sent

from the Load Generator arrived successfully at the MBaaS as it was supposed.
Regarding the duration of the experiment, the obtained times are always bigger that the set experiment

duration. This is because this time includes intermediate steps that were already referred, with sensor

registration before an experiment and the sensor unregistration after the experiment being the biggest

influences as each group of 100 sensors needs 1 minute to be registered and unregistered at the

MBaaS.
Regarding the time series analytics tool results, it is possible to say that the data type didn't make any

difference in the collected results, leaving the number of sensors and the interval between messages

as variables. These two variables influenced the device broker in different ways. The number of sensors

was responsible for the initial resources consumption, especially CPU. This means that the difference

between 100 and 300 sensors is the initial resources consumption needed to register all sensors. The

difference in the messages interval from 60 to 30 seconds is that the sensors communicate more times

which will force the device broker to receive and process more messages. Therefore, it will consume

more resources to dispatch the number of messages arriving.

Briefly, comparing with the baseline metrics, a high number of sensors result in an increasing

consumption of resources (especially CPU and Disk) and network input and output since the number

of requests for the sensors registration is bigger.
Reducing the interval between messages (from 60 to 30) has almost the same effect as increasing

EMBERS – D2.3, page 15 of 55

the number of sensors. The CPU consumption increases since there will be more messages in short

period of time and the network input and output increases for the same reason.
Regarding the disk I/O, this will increase from the first experiment to the last one since it is cumulative.

The RAM usage doesn't have bigger variations. This is a favourable point to the MBaaS since it is able

to maintain the RAM (that is the most critical resource) consumption independently from the

experiment.

2.3 FIT-IoT Lab Tools Experiments

2.3.1 Hackathon Tool wrap-up

Although not foreseen originally as a part of the testing plan, the Hackathon tool was in effect the first

realistic use-case of the MBaaS and covered most of the testing requirements defined in D2.2. The

tool was used with success back in December to send Citypulse [2] datasets events (parking, traffic,

pollution) to the MBaaS via Meshblu [3] over HTTP in quasi-real-time. The experiment was setup to

send 1 event per minute for each of the 180 devices involved (60 devices x 3 datasets) over 2 days.
Overall, the system worked as expected during two days, with a total of 180 IoT-LAB M3 nodes sending

data to Meshblu via a single gateway implemented on the IoT-LAB SSH frontend. Events we published

both on a “paginated” http interface and on a real-time publish-subscribe interface. Hackathon users

successfully used the published events.
Below is a quick recap of the experiment.
Objectives:

• Register a fixed set of devices to the Meshblu broker

• Setup metadata (GPS coordinates, names, etc.) for devices when registering

• Use fixed pre-configured/pre-registered “gateway” devices, one per data type (parking, traffic,

pollution) as targets for sending events (gateways registered by UW)

• Send events to gateways

• Assert events are received on the northbound interface (http “paginated” events list)

Experiments:
• Run 180 nodes + 1 “frontend” (60 injectors nodes x 3 datasets) for 2 days

• Manual monitoring of events flow (no report) via the HTTP “paginated” interface

Results:
• It worked seamlessly for the 2 days

• Participants successfully used published events

EMBERS – D2.3, page 16 of 55

2.3.2 Open-A8 Tooling

For the purpose of this deliverable and to further extend the use of IoT-LAB as a “real devices” provider

for the MBaaS, we developed a new set of tools targeted at the IoT-LAB A8 nodes [4]. The IoT-LAB

A8 nodes are small ARM-based embedded Linux machines, typically used as IoT “gateways” or for

“big sensors” applications. IoT-LAB offers 200+ such devices in Grenoble and another 150+ in Saclay

[5].
The tools are designed to be deployed and run on the IoT-LAB A8 nodes, but may be used on any

Linux machine that is able to interpret Python. The source code for the tools is available on GitHub [6].

The toolset is built around two sub-components: a simple multi-protocol “meshblu-clients” library and

a data-sources abstraction layer. The multi-protocol library provides for devices registration via the

Meshblu HTTP API and for events sending to Meshblu over HTTP, MQTT [7]and CoAP [8].
The toolset is composed of the three high-level command-line tools outlined below:

• the ‘registry’ tool: register/unregister/list meshblu devices

• the ‘injectors’ tool: send events to “gateway” device (e.g. from an IoT-lab A8 node)

• the ‘deploy’ tool: automate the IoT-LAB experiment: reserve nodes, deploy and run injectors

The ‘registry’ tool is used to initialize the test session to Meshblu: we register a first “authentication”

device which is required for most subsequent requests to the broker. The ‘injectors’ tool then directly

registers devices as needed and unregisters them upon completion.
Each test session simply consists in running the ‘deploy’ tool. This results in allocating a set of IoT-

LAB A8 nodes, deploying the ‘injectors’ tool on allocated nodes, running the ‘injectors’ tool in parallel

on all nodes, and collecting summary outputs. Each ‘injectors’ tool performs the sequence: register

devices, send event messages to Meshblu at specified rate for specified duration, unregister devices.

Objectives

The objective of this round of experiments is to validate that the MBaaS can handle messages sent by

IoT-LAB devices over HTTP. The test scenarios are a subset of the scenarios described in section

“Load Generator”. To validate that messages are received as expected, we used the same subscriber

tool. For this round of tests, we used a single IoT-LAB A8 node, running a single injector.
The injector parameters were set to:
--protocol http (for all test iterations)
--events traffic (for all test iterations)
--nb-devices 100 or 300 (iterations A and B respectively)
--ev-per-hour 120 or 60 (iteration A+B, case 1 and 2 respectively)
--duration 30 (for all test iterations)

EMBERS – D2.3, page 17 of 55

Experiments

Iteration Type Number of devices Duration (seconds) Messages interval

A Traffic 100 1800
60

30

B Traffic 300 1800
60

30

For both iterations, we collected server-side information using the time series analytics tool and

checked that sent messages were received by comparing counts. The results are shown in the next

section.

Results

Iteration Type Devices Duration (s) Messages interval Sent/Received messages Injection Duration

A Traffic 100 1800
60 3000/3000 0:29:09

30 6000/6000 0:29:38

B Traffic 300 1800
60 9000/9000 0:29:25

30 18000/18000 0:29:53

The detailed results regarding the time series analytics tool can be found in the appendix 5.1.
Overall, the four experiments went seamlessly. Disk IO is not impacted by the tests. Meshblu RAM

usage is stable throughout the tests, after the expected initial increase due to the load (new devices,

first messages). CPU load is caused by Meshblu only and moving in conjunction with incoming

messages as expected. Network IO is caused by Meshblu and Redis and also moving with incoming

messages.

EMBERS – D2.3, page 18 of 55

The following set of images represent the automation process to start the experiments.

Figure 8: Experiment Automation process

EMBERS – D2.3, page 19 of 55

3 Experiment Improvements and Future

This section aims to describe new scenarios for further developments in the MBaaS testing. Therefore,

use cases that will be covered to fulfil more requirements of the project will be described.

It is important to refer that the to-be-tested scenarios need to be the most approximated with reality,

with the intent of bridging the experiments to real-world scenarios.
The experiments have a baseline which represents the values that are being used in Ubiwhere

deployments and reflect Ubiwhere’s expertise on the field. They are a standard approach to every

system that is deployed. Despite being baselines, these values might change depending on the

customer and the scenario.
Traffic and parking use cases follow the following scenario: We have X sensors, and each one

communicates with a gateway every time there is an update. The gateway sends the reading to the

backend every time it receives an update from sensors or every Y minutes (keep alive mode). For now,

one gateway is used for every 50 sensors. With this in mind, we aim to understand how the system

handles multiple gateways sending data at the same time. This will allow the system to scale with the

IoT infrastructure.

For the environment scenario, each station has its own gateway, which sends the messages to the

backend. This use case also tests the multiple gateway scenario and the overall scalability of the

backend.
These first tests intend to showcase simple connections and basic load testing on the server.

Nevertheless, they need to be improved to provide a realistic enough use case for load testing. To

improve the tests, we aim to increase the number of devices and the frequency of the messages.

Beyond increasing the number of devices, it is also important to refer that different communication

protocols (MQTT, CoAP), other open standards (LwM2M [9], OneM2M [10], NGSI [11]) and other device

brokers (Ponte [12], FIWARE IoT Broker [13]) remain to be tested to understand their overall

performance and see which would be the best choice given our use case.

It is important to clarify that not every standard is meant to work on every protocol, for example,

LwM2M only supports CoAP. Nevertheless, it can be tested against other protocols.

Below the experiment evolution will be briefly documented by providing the next evolutionary step of

each one. [11]

EMBERS – D2.3, page 20 of 55

3.1 Experiment 1 / Broker Connection

This experiment was only meant to test the device broker connection and is validated by the other two.

We haven’t conducted any major testing since this was just to validate the connection. Therefore, it

does not seem relevant to maintain this experiment in further testing, although the new brokers,

protocols and standards will always need to pass this first test.

3.2 Experiment 2 / FIT-IoT LAB Tools

The FIT-IoT-LAB tools are ready for multiprotocol functional validation and performance testing of the

Meshblu broker. However, they will likely require some evolutions, if only to integrate well with other

tests for EMBERS or to adapt to a new broker such as Ponte. In any case, more MBaaS testing will be

carried out using these tools.
The foreseen areas of future testing are threefold:

1.) scaling up the load, both in terms of number of devices and events frequency
2.) multi-protocol testing (MQTT, CoAP)
3.) testing realistic end-to-end IPv6 scenarios

The goal of the load tests would be to help find the tipping point for each broker/protocol using the

IoT-LAB A8 nodes. These tests could probably be carried out using the Load Generator, in which case

it would make little sense to replicate them on IoT-LAB. If it turns out that the Load Generator cannot

“break” the brokers for lack of e.g. throughput, using IoT-LAB would then make sense.
The goal of the multiprotocol testing would be to provide functional validation and some performance

comparison for the broker implementations of IoT protocols MQTT and CoAP.
The goal of the end-to-end IPv6 scenarios testing would be to validate the full chain from real devices

to the broker and above, asserting the viability of the MBaaS in cases where unreliable, lossy radio-

backed communications are involved in the mix. In addition to the planned CoAP scenario, real-life

LwM2M implementations could be evaluated using the IoT-LAB M3 nodes.

3.3 Experiment 3 / Load Generator

It is planned to fully integrate the Load Generator with OpenMTC [14] in order to allow interoperability

tests with the OneM2M standard. Furthermore, by using the capabilities of OpenMTC it will be possible

to support other protocols like CoAP and MQTT.
Since OpenMTC is designed modular, different device brokers can be tested with the use of different

OpenMTC Application Entity modules. Therefore, it is planned to provide the necessary modules for

different device brokers like Ponte, FIWARE IoT Broker and Meshblu.

EMBERS – D2.3, page 21 of 55

Additionally, it is planned to implement the possibility to configure multiple gateways for each

experiment.
Finally, it is intended to allow the use of historical data sets in order to allow more realistic experiments.

3.4 Testing Infrastructure improvement

This subsection details the improvements to the overall infrastructure, by providing the next steps in

the Developer Dashboard and broker deployment.
Regarding the developer dashboard and future improvements, two major improvements will be done.
Firstly, it is intended to integrate with IoT-Lab in order to allow users to interact with the testbeds. This

means that it will be possible from the developer dashboard to configure and start experiments in the

IoT-Lab testbeds like it is done with the Load Generator. This way the developer dashboard will allow

users to launch an experiment with emulated devices using the Load Generator and it will allow starting

experiments using real devices and with real use case configurations.
Another improvement that will be done to the developer dashboard is the data catalogue. It aims to be

a developer dashboard section where developers can share relevant datasets. The developer

dashboard will not be used to host datasets it will only have the location of the dataset. This feature

allows users not only to share datasets that they found but also to share their own datasets.
Lastly, it is important to refer that the new device brokers will be deployed in the infrastructure to start

being tested. These device brokers are meant to be tested alongside Meshblu, the one which was

tested in these experiments.

3.5 Future Experimentation

For future experiments, it is supposed to test the MBaaS against increased load. To achieve that, in

the future another set of experiments using the Load Generator and the IoT-Lab injectors to test the

MBaaS with increased values of load will be executed. Since the experiments referred in this deliverable

were done with variations of the number of sensors (100 and 300 sensors) and an interval between

messages (60 and 30 seconds), the future experiments will follow the same structure but with different

values.
The experiments will have the number of sensors increased from 300 sensors (maximum in the

experiments of this deliverable) to a bigger number of sensors and the messages interval will be

reduced from 30 seconds (minimum in the experiments of this deliverable) to lower amounts of time.

This is intended to test the overall platform and numbers are to be defined. The table below represents

an example of the future experiments, in the future the values might change.

EMBERS – D2.3, page 22 of 55

Iteration Type Number of devices Duration (s) Messages interval (s)

A

Traffic 1000 1800

60

30

15

Parking 1000 1800

60

30

15

Environment 1000 1800

60

30

15

So, with these tests, like the ones referred in this deliverable, data will be collected regarding the

MBaaS host: CPU usage, memory RAM usage, Disk I/O, Network output and Network input by

container/service.

These metrics will allow the MBaaS evaluation, identify possible points of failures and will be used as

performance indicators in multiple use cases.

First of all, these will be used to compare the maximum number of messages per second that the

different brokers can handle.

Also, it is to be tested, if the number of gateways (and devices) used in the experiments makes

difference to the numbers that we are getting and if the size of the payload matters in the overall

performance of the brokers.

Another test will compare the protocols MQTT and COAP with the tested HTTP.

Lastly, the tests made for this deliverable were solely for the southbound interface, in further

developments the northbound interface will be included in order to understand the overall performance

of the MBaaS as a full Mobility platform.

EMBERS – D2.3, page 23 of 55

4 Conclusion

This deliverable summarized the results of the first wave of experiments executed in the scope of

EMBERS.
The work described and concluded in the past months shows that the technical foundation of EMBERS

is well advanced and the interworking with the two FIRE+ infrastructures provides valuable input for

the MBaaS development. This is supported by the success the project had in the Hackathon and this

first batch of experiments, which were meant to connect the platform to the FIRE+ testbeds and

provide some basic insights on how performance will be measured during the project.
More experimentation is still ahead in order to fulfil all technical objectives of the project. Further

deliverables will cover more technical aspects by providing more protocols, brokers and standards

which remain to be tested.
At this point, we have seen that the MBaaS can handle small to medium amount of devices

communication at low/medium frequencies. In the next tests that will cover by the next deliverables,

more tests will be done with an increase in the number of devices and with higher frequencies update

(interval between messages).
Given the experiments, it is possible to say that the MBaaS can be ran using a host with low

characteristics.
All in all, the next iteration of experiments is expected to further support this foundation by integration

of additional device brokers and M2M protocols to test interoperability capabilities.

EMBERS – D2.3, page 24 of 55

5 Appendix

5.1 FiT - IoT Lab Experiments

This appendix section aims to show the results obtained for each iteration of the FIT-IoT Lab

experiment. These results include screenshots of time series analytics tool.
For the time series analytics tool the colours for each chart represent the following services:

 Mongo Postgres Meshbl#u Socket.io Load generator broker

 Redis Meshblu HTTP Meshblu Core Reverse proxy

5.1.1 Iteration A - Traffic

This iteration was done in order to test the MBaaS against traffic data. For that purpose, this iteration

used 100 sensors to communicate with the MBaaS during 30 minutes with an interval between

messages of 60 and 30 seconds.

5.1.1.1 Interval between messages of 60 seconds

5.1.1.1.1 Time series analytics results

CPU usage by container

Memory RAM usage by container

EMBERS – D2.3, page 25 of 55

Disk input/output by container

Network output by container

Network input by container

5.1.1.2 Interval between messages of 30 seconds

5.1.1.2.1 Time series analytics results
CPU usage by container

Memory RAM usage by container

EMBERS – D2.3, page 26 of 55

Disk input/output by container

Network output by container

Network input by container

5.1.2 Iteration B - Traffic

This iteration was done in order to test the MBaaS against traffic data. For that purpose, this iteration

used 300 sensors to communicate with the MBaaS during 30 minutes with an interval between

messages of 60 and 30 seconds.

5.1.2.1 Interval between messages of 60 seconds

5.1.2.1.1 Time series analytics results

CPU usage by container

EMBERS – D2.3, page 27 of 55

Memory RAM usage by container

Disk input/output by container

Network output by container

Network input by container

5.1.2.2 Interval between messages of 30 seconds

5.1.2.2.1 Time series analytics results

CPU usage by container

EMBERS – D2.3, page 28 of 55

Memory RAM usage by container

Disk input/output by container

Network output by container

Network input by container

EMBERS – D2.3, page 29 of 55

5.2 Load Generator Experiments

This appendix section aims to show the results obtained for each iteration of the load generator

experiment. These results include screenshots of the automation tool used to automate the tests and

of the time series analytics tool.
For the time series analytics tool the colours for each chart represent the following services:

 Mongo Postgres Meshblu Socket.io Load generator broker

 Redis Meshblu HTTP Meshblu Core Reverse proxy

5.2.1 Iteration A - Traffic

This iteration was done in order to test the MBaaS against traffic data. For that purpose, this iteration

used 100 sensors to communicate with.

EMBERS – D2.3, page 30 of 55

5.2.1.1 Interval between messages of 60 seconds

5.2.1.1.1 Automation tool results

EMBERS – D2.3, page 31 of 55

5.2.1.1.2 Time series analytics results

CPU usage by container

Memory RAM usage by container

Disk I/O by container

Network output by container

Network input by container

EMBERS – D2.3, page 32 of 55

5.2.1.2 Interval between messages of 30 seconds

5.2.1.2.1 Automation tool results

EMBERS – D2.3, page 33 of 55

5.2.1.2.2 Time series analytics results

CPU usage by container

Memory RAM usage by container

Disk I/O by container

Network output by container

Network input by container

EMBERS – D2.3, page 34 of 55

5.2.2 Iteration A - Parking

This iteration was done in order to test the MBaaS against parking data. For that purpose, this iteration

used 100 sensors to communicate with the MBaaS during 30 minutes with an interval between

messages of 60 and 30 seconds.

5.2.2.1 Interval between messages of 60 seconds

5.2.2.1.1 Automation tool results

EMBERS – D2.3, page 35 of 55

5.2.2.1.2 Time series analytics results

CPU usage by container

Memory RAM usage by container

Disk I/O by container

Network output by container

Network input by container

EMBERS – D2.3, page 36 of 55

5.2.2.2 Interval between messages of 30 seconds

5.2.2.2.1 Automation tool results

EMBERS – D2.3, page 37 of 55

5.2.2.2.2 Time series analytics results

CPU usage by container

Memory RAM usage by container

Disk I/O by container

Network output by container

Network input by container

EMBERS – D2.3, page 38 of 55

5.2.3 Iteration A - Environment

This iteration was done in order to test the MBaaS against environment data. For that purpose, this

iteration used 100 sensors to communicate with the MBaaS during 30 minutes with an interval between

messages of 60 and 30 seconds.

5.2.3.1 Interval between messages of 60 seconds

5.2.3.1.1 Automation tool results

EMBERS – D2.3, page 39 of 55

5.2.3.1.2 Time series analytics results

CPU usage by container

Memory RAM usage by container

Disk I/O by container

Network output by container

Network input by container

EMBERS – D2.3, page 40 of 55

5.2.3.2 Interval between messages of 30 seconds

5.2.3.2.1 Automation tool results

EMBERS – D2.3, page 41 of 55

5.2.3.2.2 Time series analytics results

CPU usage by container

Memory RAM usage by container

Disk I/O by container

Network output by container

Network input by container

EMBERS – D2.3, page 42 of 55

5.2.4 Iteration B - Traffic

This iteration was done in order to test the MBaaS against traffic data. For that purpose, this iteration

used 300 sensors to communicate with the MBaaS during 30 minutes with an interval between

messages of 60 and 30 seconds.

EMBERS – D2.3, page 43 of 55

5.2.4.1 Interval between messages of 60 seconds

5.2.4.1.1 Automation tool results

EMBERS – D2.3, page 44 of 55

5.2.4.1.2 Time series analytics tools

CPU usage by container

Memory RAM usage by container

Disk I/O by container

Network output by container

Network input by container

EMBERS – D2.3, page 45 of 55

5.2.4.2 Interval between messages of 30 seconds

5.2.4.2.1 Automation tool results

EMBERS – D2.3, page 46 of 55

5.2.4.2.2 Time series analytics results

CPU usage by container

Memory RAM usage by container

Disk I/O by container

Network output by container

Network input by container

EMBERS – D2.3, page 47 of 55

5.2.5 Iteration B - Parking

This iteration was done in order to test the MBaaS against parking data. For that purpose, this iteration

used 300 sensors to communicate with the MBaaS during 30 minutes with an interval between

messages of 60 and 30 seconds.

5.2.5.1 Interval between messages of 60 seconds

5.2.5.1.1 Automation tool results

EMBERS – D2.3, page 48 of 55

5.2.5.1.2 Time series analytics results

CPU usage by container

Memory RAM usage by container

Disk I/O by container

Network output by container

Network input by container

EMBERS – D2.3, page 49 of 55

5.2.5.2 Interval between messages of 30 seconds

5.2.5.2.1 Automation tool results

EMBERS – D2.3, page 50 of 55

5.2.5.2.2 Time series analytics tools

CPU usage by container

Memory RAM usage by container

Disk I/O by container

Network output by container

Network input by container

EMBERS – D2.3, page 51 of 55

5.2.6 Iteration B - Environment

This iteration was done in order to test the MBaaS against environment data. For that purpose, this

iteration used 300 sensors to communicate with the MBaaS during 30 minutes with an interval between

messages of 60 and 30 seconds.

5.2.6.1 Interval between messages of 60 seconds

5.2.6.1.1 Automation tool results

EMBERS – D2.3, page 52 of 55

5.2.6.1.2 Time series analytics results

CPU usage by container

Memory RAM usage by container

Disk I/O by container

Network output by container

Network input by container

EMBERS – D2.3, page 53 of 55

5.2.6.2 Interval between messages of 30 seconds

5.2.6.2.1 Automation tool results

EMBERS – D2.3, page 54 of 55

5.2.6.2.2 Time series analytics results

CPU usage by container

Memory RAM usage by container

Disk I/O by container

Network output by container

Network input by container

EMBERS – D2.3, page 55 of 55

6 References

[1] European Commission, “FIRE+,” [Online]. Available: http://www.ict-fire.eu/home.html.

[2] City Pulse, “City Pulse,” [Online]. Available: http://www.ict-citypulse.eu/.

[3] Octoblu, “Meshblu,” [Online]. Available: https://meshblu.readme.io/.

[4] FIT-IoT Lab, “A8 Open Node,” 31 3 2017. [Online]. Available: https://www.iot-

lab.info/hardware/a8/.

[5] FIT-IoT Lab, “Deployment,” 31 3 2017. [Online]. Available: https://www.iot-lab.info/deployment/.

[6] FIT-IoT Lab, “iotlab-injectors,” 31 3 2017. [Online]. Available: github.com/iot-lab/iotlab-injectors/. .

[7] MQTT, “MQTT,” [Online]. Available: http://mqtt.org/.

[8] TZI, “CoAP,” [Online]. Available: http://coap.technology/.

[9] OMA, “OMA LwM2M,” [Online]. Available: http://openmobilealliance.hs-sites.com/lightweight-

m2m-specification-form-oma.

[10] oneM2M, “oneM2M,” [Online]. Available: http://www.onem2m.org.

[11] Telefonica, “FI-WARE NGSI Open RESTful API Specification,” [Online]. Available:

https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE_

NGSI_Open_RESTful_API_Specification.

[12] Eclipse Foundation, “Eclipse Ponte,” [Online]. Available: http://www.eclipse.org/ponte/.

[13] FIWARE, “IoT Broker,” [Online]. Available: https://catalogue.fiware.org/enablers/iot-broker.

[14] FRAUNHOFER FOKUS, “openMTC,” [Online]. Available: http://www.openmtc.org/.

